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Figure 1: We introduce SMPLicit, a fully differentiable generative model for clothed bodies, capable of representing garments with
different topology. The four figures on the left show the application of the model to the problem of 3D body and cloth reconstruction from
an input image. We are able to predict different models per cloth, even for multi-layer cases. Three right-most images: The model can also
be used for editing the outfits, removing/adding new garments and re-posing the body.

Abstract
In this paper we introduce SMPLicit, a novel generative

model to jointly represent body pose, shape and clothing ge-
ometry. In contrast to existing learning-based approaches
that require training specific models for each type of gar-
ment, SMPLicit can represent in a unified manner different
garment topologies (e.g. from sleeveless tops to hoodies and
to open jackets), while controlling other properties like the
garment size or tightness/looseness. We show our model to
be applicable to a large variety of garments including T-
shirts, hoodies, jackets, shorts, pants, skirts, shoes and even
hair. The representation flexibility of SMPLicit builds upon
an implicit model conditioned with the SMPL human body
parameters and a learnable latent space which is semanti-
cally interpretable and aligned with the clothing attributes.
The proposed model is fully differentiable, allowing for its
use into larger end-to-end trainable systems. In the exper-
imental section, we demonstrate SMPLicit can be readily
used for fitting 3D scans and for 3D reconstruction in im-
ages of dressed people. In both cases we are able to go
beyond state of the art, by retrieving complex garment ge-
ometries, handling situations with multiple clothing layers
and providing a tool for easy outfit editing. To stimulate fur-
ther research in this direction, we will make our code and
model publicly available at http://www.iri.upc.
edu/people/ecorona/smplicit/.

1. Introduction

Building a differentiable and low dimensional genera-
tive model capable to control garments style and deforma-
tions under different body shapes and poses would open the
door to many exciting applications in e.g. digital animation
of clothed humans, 3D content creation and virtual try-on.
However, while such representations have been shown ef-
fective for the case of the undressed human body [35, 45],
where body shape variation can be encoded by a few pa-
rameters of a linear model, there exist so far, no similar ap-
proach for doing so on clothes.

The standard practice to represent the geometry of
dressed people has been to treat clothing as an additive dis-
placement over canonical body shapes, typically obtained
with SMPL [4, 26, 37, 44]. Nevertheless, these types of ap-
proaches cannot tackle the main challenge in garment mod-
eling, which is the large variability of types, styles, cut, and
deformations they can have. For instance, upper body cloth-
ing can be either a sleeveless top, a long-sleeve hoodie or
an open jacket. In order to handle such variability, existing
approaches need to train specific models for each type of
garment, hampering thus their practical utilization.

In this paper, we introduce SMPLicit, a topologically-
aware generative model for clothed bodies that can be con-
trolled by a low-dimensional and interpretable vector of pa-
rameters. SMPLicit builds upon an implicit network ar-
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chitecture conditioned on the body pose and shape. With
these two factors, we can predict clothing deformation in
3D as a function of the body geometry, while controlling the
garment style (cloth category) and cut (e.g. sleeve length,
tight or loose-fitting). We independently train this model
for two distinct cloth clusters, namely upper body (includ-
ing sleeveless tops, T-shirts, hoodies and jackets) and lower
body (including pants, shorts and skirts). Within each clus-
ter, the same model is able to represent garments with very
different geometric properties and topology while allowing
to smoothly and consistently interpolate between their ge-
ometries. Shoes and hair categories are also modeled as
independent categories. Interestingly, SMPLicit is fully dif-
ferentiable and can be easily deployed and integrated into
larger end-to-end deep learning systems.

Concretely, we demonstrate that SMPLicit can be read-
ily applied to two different problems. First, for fitting 3D
scans of dressed people. In this problem, our multi-garment
“generic” model is on a par with other approaches that were
specifically trained for each garment [37, 44]. We also ap-
ply SMPLicit for the challenging problem of 3D reconstruc-
tion from images, where we compare favorably to state-of-
the-art, being able to retrieve complex garment geometries
under different body poses, and can tackle situations with
multiple clothing layers. Fig. 1 shows one such example,
where besides reconstructing the geometry of the full out-
fit, SMPLicit provides semantic knowledge of the shape,
allowing then for garment editing and body re-posing, key
ingredients of virtual try-on systems.

To summarize, the main contributions of our work are:
(1) A generative model that is capable of representing
clothes under different topology; (2) A low-dimensional
and semantically interpretable latent vector for controlling
clothing style and cut; (3) A model that can be conditioned
on human pose, shape and garment style/cut; (4) A fully
differentiable model for easy integration with deep learn-
ing; (5) A versatile approach that can be applied to both
3D scan fitting and 3D shape reconstruction from images in
the wild; (6) A 3D reconstruction algorithm that produces
controllable and editable surfaces.

2. Related work
Cloth modeling is a long-standing goal lying at the inter-

section of computer vision and computer graphics. We next
discuss related works, grouping them in Generative cloth
models and 3D reconstruction of clothed humans, the two
main topics in which we contribute.

2.1. Generative cloth models

Drawing inspiration on the success of the data driven
methods for modeling the human body [7, 47, 16, 27, 35,
45, 51], a number of approaches aim to learn clothing mod-
els from real data, obtained using multiple images [1, 3,

Method
Body Pose
Variations

Body Shape
Variations Topology

Low-Dimension
Latent Vector

Model is
public

Santesteban [57] X X
DRAPE [18] X X X
Wang [64] X X X

GarNet [20] X X X
TailorNet [44] X X X X

BCNet [26] X X X X
Vidaurre [63] X X X

Shen [59] X X X X
SMPLicit X X X X X

Table 1: Comparison of our method with other works.

4, 9, 21], 3D scans [40, 46, 8] or RGBD sensors [68, 69].
Nevertheless, capturing a sufficiently large volume of data
to represent the complexity of clothes is still an open chal-
lenge, and methods built using real data [15, 66, 32] have
problems to generalize beyond the deformation patterns of
the training data. [37] addresses this limitation by means of
a probabilistic formulation that predicts clothing displace-
ments on the graph defined by the SMPL mesh. While
this strategy improves the generalization capabilities, the
clothes it is able to generate can not largely depart from the
shape of a “naked” body defined by SMPL.

An alternative to the use of real data is to learn clothing
models using data from physics simulation engines [18, 20,
44, 57, 64]. The accuracy of these models, however, is again
constrained by the quality of the simulations. Additionally,
their underlying methodologies still rely on displacement
maps from a template, and can not produce different topolo-
gies.

Very recently, [26, 59, 63] have proposed strategies to
model garments with topologies departing from the SMPL
body mesh, like skirts or dresses. [26] does so by predict-
ing generic skinning weights for the garment, independent
from those of the body mesh. In [63], the garment is char-
acterized by means of 2D sewing patterns, with a set of
parameters that control its 3D shape. A limiting factor of
these approaches is that they require training specific mod-
els for each type of garment, penalizing thus their practical
use. [59] uses also sewing patterns to build a unified rep-
resentation encoding different clothes. This representation,
however, is too complex to allow controlling the generation
process with just a few parameters. SMPLicit, in contrast,
is able to represent using a single low-dimensional paramet-
ric model a large variety of clothes, which largely differ in
their geometric properties, topology and cut.

Table 1 summarizes the main properties of the most re-
cent generative cloth models we have discussed.

2.2. Reconstructing clothed humans from images

Most approaches for reconstructing 3D humans from im-
ages return the SMPL parameters, and thus only retrieve 3D
body meshes, but not clothing [11, 19, 28, 30, 31, 33, 41, 45,
52, 60, 65]. To reconstruct clothed people, a standard prac-
tice is to represent clothing geometry as an offset over the
SMPL body mesh [1, 2, 3, 42, 4, 9, 34, 58, 71]. However,
these approaches are prone to fail for loose garments that
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Training

Inference

Figure 2: Architecture of SMPLicit during training (top row) and inference (bottom row). At the core of SMPLicit lies an implicit-
function network C that predicts unsigned distance from the query point p to the cloth iso-surface. The input Pβ is encoded from p given
a body shape. During training, we jointly train the network C as the latent space representation is created. We include an image encoder
f that takes SMPL occlusion maps from ground truth garments and maps them to shape representations zcut, and a second component
zstyle trained as an auto-decoder [43]. At inference, we run the network C(·) for a densely sampled 3D space and use Marching Cubes to
generate the 3D garment mesh. We finally pose each cloth vertex using the learnt skinning parameters [35] of the closest SMPL vertex.

exhibit large displacements over the body.
Non-parametric representations have also been explored

for reconstructing arbitrary clothing topologies. These in-
clude approaches based on volumetric voxelizations [62],
geometry images [49], bi-planar depth maps [17] or visual
hulls [39]. Certainly, the most powerful model-free repre-
sentations are those based on implicit functions [54, 55, 13].
Recent approaches have also combined parametric and
model-free representations, like SMPL plus voxels [70] and
SMPL plus implicit functions [8, 24].

While these approaches retrieve rich geometric detail,
the resulting surfaces can not be controlled in both pose and
clothing. SMPLicit is also built upon implicit functions, but
our output contains multiple layers for the body and gar-
ments, and allows control over pose and clothing.

3. SMPLicit
We next describe the SMPLicit formulation, training

scheme and how it can be used to interpolate between
clothes. Fig. 2 shows the whole train and inference process.

3.1. Vertex Based SMPL vs SMPLicit

We build on the parametric human model SMPL [35]
to generate clothes that adjust to a particular human body
M(β,θ), given its shape β and pose θ. SMPL is a function

M(β,θ) : θ × β 7→ V ∈ R3N , (1)

which predicts theN vertices V of the body mesh as a func-
tion of pose and shape. Our goal is to add a layer of clothing
on top of SMPL. Prior work adds displacements [1, 3] on
top of the body, or learns garment category-specific vertex-
based models [20, 44]. The problem with predicting a fixed

number of vertices is that different topologies (T-shirt vs
open jacket) and extreme geometry changes (sleeve-less vs
long-sleeve) can not be represented in a single model.

Our main contribution is SMPLicit-core (Sec.3.2-3.4),
which departs from vertex models, and predicts clothing on
T-pose with a learned implicit function

C(p,β, zcut, zstyle) 7→ R+. (2)

Specifically, we predict the unsigned distance to the cloth-
ing surface for a given point p ∈ R3. By sampling enough
points, we can reconstruct the desired mesh by thresholding
the distance field and running Marching Cubes [36]. In ad-
dition to shape, we want to control the model with intuitive
parameters (zcut, zstyle) representing the cut (e.g., long vs
short) and style (e.g., hoodie vs not hoodie) of the clothing.
Moreover, although it is not the focus of this paper, we also
learn a point-based displacement field (Sec.3.5) to model
pose-dependent deformations, and use SMPL skinning to
pose the garments. The full model is called SMPLicit and
outputs posed meshes G on top of the body:

C ′(θ,β, zcut, zstyle) 7→ G. (3)

3.2. SMPLicit-Core Formulation

We explain here how we learn the input representation:
two latent spaces to control clothing cut and style, and body
shape to control fit; and the output representation. To-
gether, these representations allow to generate and control
garments of varied topology in a single model.
Clothing cut: We aim to control the output clothing cut,
which we define as the body area occluded by clothing. To
learn a latent space of cut, for each garment-body pair in
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the training set, we compute a UV body occlusion image
denoted as U. That is, we set every pixel in the SMPL body
UV map to 1 if the corresponding body vertex is occluded
by the garment, and 0 otherwise, see Fig. 2. Then we train
an image encoder f : U 7→ zcut ∈ RD to map the occlusion
image to a latent vector zcut.
Clothing style: Different clothes might have the same body
occlusion image U, but their geometry can differ in tight-
ness, low-frequency wrinkles or collar details. Thus we add
another subset of parameters zc which are initialized as a
zero-vector and trained following the auto-decoder proce-
dure from [43].

The set of parameters z = [zcut, zstyle] ∈ RN fully de-
scribes a garment cut and style.
Body shape: Since we want the model to vary with body
shape, instead of learning a mapping from points to occu-
pancy [12, 38, 43], we first encode points relative to the
body. For each garment, we identify SMPL vertices that are
close to ground truth models (e.g. torso vertices for upper-
body clothes), and obtain K vertex clusters vk ∈ R3 that
are distributed uniformly on the body in a T-pose. Then we
map a 3D point in space p ∈ R3 to a body relative encoding
Pβ ∈ RK×3 matrix, with rows storing the displacements to
the clusters Pβ,k = (p−vk). This over-parameterized rep-
resentation allows the network to reason about body bound-
aries, and we empirically observed superior performance
compared to Euclidean or Barycentric distances.
Output representation: One of the main challenges in
learning a 3D generative clothing model is registering train-
ing garments [9, 46] (known to be a hard problem), which
is necessary for vertex-based models [37, 44]. Implicit sur-
face representations do not require registration, but neces-
sitate closed surfaces for learning occupancies [38, 48] or
signed distances [43, 53]. Since garments are open surfaces,
we follow recent work [14] by predicting unsigned distance
fields.

Given a query point p, its positional encoding Pβ

and cloth parameters z, we train a decoder network
C(Pβ, z) 7→ R+ to predict the unsigned distance D(p) to
the ground truth cloth surface.

3.3. SMPLicit-core Training

Training entails learning the network parameters w1 of
the clothing cut image encoder zcut = f(U;w1), the style
latent parameters zstyle for each training example, and the
parameters of the decoder network C(·;w2). For one train-
ing example, and one sampled point p, we have the follow-
ing loss:

Ld = |C(Pβ, f(U;w1), zstyle;w2)−D(p)|. (4)

During training, we sample points uniformly on a body
bounding box, and also near the ground-truth surface, and

learn a model of all garment categories jointly (we train sep-
arate models for upper-body, pants, skirts, shoes and hair
though, because interpolation among them is not meaning-
ful). At inference, we discard the encoder f : U 7→ zcut
network, and control SMPLicit directly with zcut.

To smoothly interpolate and generate new clothing, we
constrain the latent space z = [zcut, zstyle] to be distributed
normally with a second loss component Lz = |z|.

We also add zero mean identity covariance Gaussian
noise zσ ∼ N (0, σnI) in the cloth representations before
the forward pass during training, taking as input C(Pβ, z+
zσ), which proves specially helpful for garment types where
we have a very small amount of data. The network C
and the cloth latent spaces are jointly learned by minimiz-
ing a linear combination of the previously defined losses
Ld + λzLz , where λz is a hyper-parameter.

3.4. SMPLicit-core Inference

To generate a 3D garment mesh, we evaluate our network
C(·) at densely sampled points around the body in a T-pose,
and extract the iso-surface of the distance field at threshold
td using Marching Cubes [36]. We set the hyperparameter
td = 0.1mm such that reconstructed garments do not have
artifacts and are smooth. Since C(·) predicts unsigned dis-
tance and td > 0, the reconstructed meshes have a slightly
larger volume than ground truth data; this is still better than
closing the garments for training which requires voxeliza-
tion. Thinner surfaces could be obtained with Neural Dis-
tance Fields [14], but we leave this for future work.

In summary, we can generate clothes that fit a body shape
β by: (1) sampling z ∼ N (µ∗1, σ ∗I), with a single mean
and variance (µ, σ ∈ R) for all latent components obtained
from the training latent spaces; (2) estimating the positional
encoding Pβ for points around the T-pose and evaluating
C(Pβ, z); (3) thresholding the distance field, and (4) run-
ning marching cubes to get a mesh.

3.5. Pose Dependent Deformation

SMPLicit-core can drape garments on a T-posed SMPL,
but does not predict pose dependent deformations. Al-
though pose deformation is not the focus of this work,
we train a pose-dependent model to make SMPLicit read-
ily available for animation applications. Similar to prior
work [44], we learn the pose-deformation model on a
canonical T-pose, and use SMPL learned skinning to pose
the deformed mesh. Here, we leverage the publicly avail-
able TailorNet [44] dataset of simulated garments. Specifi-
cally, we learn a second network which takes body pose θ,
a learnable latent variable zθ and maps them to a per-point
displacement P : p× θ × zθ 7→ d ∈ R3. The latent space
of zθ is learned in an auto-decoding fashion like zstyle.

During training, since we are only interested in the dis-
placement field on the surface, we only evaluate the model
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Figure 3: Overview of interpolations on latent space. (A) effect
of the two first principal components in the garment geometry. (B)
SMPLicit can be used to interpolate from T-shirts to more complex
clothes like hoodies, jackets or tops. (C) examples of retargeting
an upper-body cloth to different human body shapes.

on points sampled along the cloth surface template on a
T-Pose. We also encode the position of the input points
p 7→ Pβ as a function of the body surface and train the
model to minimize the difference between ground truth dis-
placement and prediction.

During inference, we only evaluate P on the vertices of
the recovered SMPLicit-core mesh, and displace them ac-
cordingly p 7→ p + d to obtain a deformed mesh (still in
the T-pose). Then we apply SMPL [35] to both body and
deformed garment to pose them with θ. In particular, we
deform each garment vertex using the skinning deformation
of the closest SMPL body vertex. This process determines
the SMPLicit function C ′(·) defined in Eq. (3).

4. Applications of SMPLicit

In this section, we show the potential of SMPLicit for
several computer vision and graphics applications. We
demonstrate how to interpolate garments in the latent space
and edit their cut and style. We then show how SM-
PLicit can be fitted to 3D scans of dressed humans, or di-
rectly to in-the-wild images for perception tasks, taking ad-
vantage of the full differentiability of the predicted unsigned
distance field with respect to cloth parameters.

4.1. Generative properties

To provide control to the user, we perform PCA on the
latent space to discover directions which vary intuitive cloth
properties, like sleeve-length, and identify cloth prototypes
such as hoodies and tops.

PCA: The latent space z = [zcut, zstyle] of SMPLicit-core

Distance to surface (mm)
Short Sleeves Long Sleeves

Method Lower-Body Upper-Body Lower-Body Upper-Body

Cape [37] 1.15 0.87 1.09 1.35
TailorNet [44] - 0.32 0.48 0.41

SMPLicit 0.78 0.46 0.58 0.52

Table 2: Capacity of SMPLicit for fitting 3D scans in compar-
ison with TailorNet [44] and CAPE [37]. Note that we fit clothes
on either long-sleeves or short-sleeves using a single model, while
baselines have particularly trained for such topologies. All models
achieve a remarkably accurate fitting within the segmented clothes
of the original 3D scans.

is small (4 to 18) in order to better disentangle cloth char-
acteristics. We further perform PCA on the zcut latent
space and find that, for the upper and lower-body clothes,
the first component controls sleeve length, while the sec-
ond changes overall length (for upper-body garments), or
the waist boundary height (for pants and skirts). Fig. 3-
(A) shows the effect of the first 2 components for upper-
garment. We also notice that perfect disentanglement from
cut and style is not possible, as for example the network
learns that tops tend to be more loose than t-shirts.

Prototypes: Furthermore, we identify cloth prototypes with
interesting characteristics in the train data, such as open
jackets, hoodies or tops, and store their average style latent
space vectors z. Fig. 3-(B) illustrates interpolation from a
T-shirt to each of these prototypes; notice how SMPLicit is
able to smoothly transition from short-sleeve to open jacket.

Body Shape: In Fig. 3-(C), we show results of re-targeting
a single T-Shirt to significantly different body shapes.

4.2. Fitting SMPLicit to 3D scans of dressed people

Here we show how to fit SMPLicit to 3D scans of the
Sizer dataset [61] which includes cloth segmentation. In-
tuitively, the main objective for fitting is to impose that
SMPLicit-core evaluates to zero at the unposed scan points.
We sample 3D points uniformly on the segmented scan
upper-body and lower-body clothes, and also the 3D empty
space around it. Let q ∈ R3 be a point in the posed scan
space, and let d = dist(q,S) be the distance to the scan.
Since SMPLicit-core is defined on the T-pose, we unpose
q using the differentiable SMPL parameters (we associate
to the closest SMPL vertex), and obtain the body relative
encoding Pβ(θ,β), now as a function of shape and pose.
Then we impose that our model C evaluates to the same
distance at the encoding of the unposed point:

L(β,θ, z) = |C(Pβ(θ,β), z)− d|. (5)

We run the optimization for a number of iterations and for
the cloth parameters of all garments the person is wear-
ing. We also minimize the Chamfer distance between scan
points and SMPL vertices, the MSE between SMPL joints
and predicted scan joints, an SMPL prior loss [11], and a
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3D Scans CAPE [37] TailorNet [44] SMPLicit

Figure 4: Fitting SMPLicit to 3D Scans of the Sizer Dataset [61]. All three models achieve fitting results of approximately 1 mm of
error. However, SMPLicit does this using a single model that can represent varying clothing topologies. For instance, it can model either
hoodies (top row) and tank tops (third row) or long and short pants.

regularization term for z. We use scheduling and first opti-
mize the pose and shape, and finally all parameters jointly.
See the Supp. Mat. for more details.

4.3. Fitting SMPLicit to images

Similar to SMPL for undressed bodies, SMPLicit pro-
vides the robustness and semantic knowledge to reconstruct
clothed people in images, especially in presence of severe
occlusions, difficult poses, low-resolution images and noise.
We first detect people and obtain an estimate of each per-
son’s pose and shape [52], as well as a 2D cloth semantic
segmentation [67]. We then fit SMPLicit to every detection
to obtain layered 3D clothing.

For every detected garment, we uniformly sample the
space around the T-Posed SMPL, deform those points to
the target SMPL pose (p 7→ p̄), and remove those that are
occluded by the own body shape. Each posed point p̄ is
then projected, falling into a semantic segmentation pixel
(u, v) that matches its garment class sp = 1 or another
class/background sp = 0. We have the following loss for a
single point p:

LI(z) =

{
|C(Pβ, z)− dmax|, if sp = 0

mini|C(Piβ, z)|, if sp = 1
(6)

When sp = 0 we force our model to predict the maximum
cut-off distance dmax of our distance fields (we force the

point to be off-surface). When sp = 1 we force prediction
to be zero distance (point in surface). Since many points
p̄i (along the camera ray) might project to the same pixel
(u, v), we take the mini(·) to consider only the point with
minimum distance (closest point to the current garment sur-
face estimate). Experimentally, this prevents thickening of
clothes, which helps when we reconstruct more than one
cloth layer. We also add a regularization loss Lz = |z| and
optimize it jointly with LI .

5. Implementation details
We next describe the main implementation details. Fur-

ther information is provided in the Suppl. Material and in
the code that will be made publicly available.

For the cloth latent space, we set |z|= 18 for upper-
body, pants, skirts, hair and |z|= 4 for shoes; the pose-
dependent deformation parameters |zθ|= 128, number of
positional encoding clusters K = 500 and iso-surface
threshold td = 0.1 mm. We clip the unsigned distance field
dmax = 10mm. The implicit network architecture uses
three 2-Layered MLPs that separately encode zcut, zstyle
and Pβ into an intermediate representation before a last
5-Layered MLP predicts the target unsigned distance field.
SMPLicit is trained using Adam [29], with an initial learn-
ing rate 10−3, β1 = 0.9, β2 = 0.999 for 1M iterations with
linear LR decay after 0.5M iterations. We use BS = 12,
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Figure 5: 3D reconstruction of clothed humans, in comparison to PIFuHD [55] and Tex2Shape [4]. SMPL regression is from [52].

σn = 10−2 and refine a pre-trained ResNet-18 [22] as im-
age encoder f . As [43], we use weight normalization [56]
instead of batch normalization [25].

6. Experiments

This section first describes the datasets used to train SM-
PLicit, and then we show results for fitting 3D scans and 3D
reconstruction of dressed people from images.

6.1. Training data

In order to train SMPLicit we resort to several pub-
licly available datasets and augmentations. Concretely, we
use the long-sleeved T-shirts (88797), pants (44265) and
skirts (44435) from the BCNet Dataset [26]. This data is
augmented by manually cutting different sleeve sizes on
Blender [10], yielding a total of 800k T-shirts, 973k pants
and 933k skirts. We also use 3D cloth models of jackets
(23), jumpers (6), suits (2), hoodies (5), tops (12), shoes
(28), boots (3) and sandals (3) downloaded from diverse
public links of the Internet. We adjust these garments to a
canonical body shape β = 0 and transfer them to randomly
sampled body shapes during training, deforming each ver-
tex using the shape-dependent displacement of the closest
SMPL body vertex. For hair, we use the USC-HairSalon

dataset [23], which contains 343 highly dense hair point-
clouds, mostly of long hair. Given the large imbalance on
the cloth categories for the upper-body, in each train itera-
tion we sample one of the downloaded models with proba-
bility 0.5, otherwise we used one of the BCNet garments.

For training the pose-dependent deformation model of
Sec. 3.5, we use cloth simulations from TailorNet [44],
which consist of 200 shirt and pants instances. For the re-
maining garments, except for shoes (which we do not fur-
ther deform), we train a deformation model parameterized
only by zθ, given manually warps generated using Blender.

6.2. Fitting SMPLicit to scans of dressed people

We applied SMPLicit-core to the problem of fitting 3D
scans of clothed humans from the Sizer dataset [61], com-
paring against the recent TailorNet [44] and CAPE [37].
Since these methods have been specifically trained for long-
sleeved and short-sleeved (for both shirt and pants), we only
evaluate the performance of SMPLicit on these garments.

In Table 2 we report the reconstruction error (in mm)
of the three methods. Note that in our case, we use a sin-
gle model for modeling both short- and long-sleeves gar-
ments, while the other two approaches train independent
models for each case. In any event, we achieve results
which are comparable to Tailornet, and significantly bet-
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Input Reconstruction 3D Layered Clothing Input Reconstruction 3D Layered Clothing

Figure 6: Fitting SMPLicit in multi-person images from the MPII [6] dataset. SMPLicit can dress SMPL with a variety of
clothes. Failure case in bottom-right example, where cloth semantic segmentation mixes shirts and jackets in most upper-bodies, and
SMPLicit wrongly optimizes two similar intersecting jackets. Best viewed in color with zoom.

ter than CAPE. Qualitative results of this experiment are
shown in Fig. 4. Note that CAPE does not provide specific
meshes for the clothes, and only deforms SMPL mesh ver-
tices. Tailornet yields specific meshes for shirts and long
pants. SMPLicit, on the other hand, allows representing
different topologies with a single model, from hoodies (first
row) to a tank top (third row).

6.3. 3D reconstruction of clothed humans

Finally, using the optimization pipeline detailed in
Sec. 4.3, we demonstrate that SMPLicit can also be fitted to
images of clothed people and provide a 3D reconstruction
of the body and clothes. Recall that to apply our method,
we initially use [52] to estimate SMPL parameters and [67]
to obtain a pixel-wise segmentation of gross clothing labels
(i.e. upper-clothes, coat, hair, pants, skirts and shoes).

In Fig. 5 we show the results of this fitting on several im-
ages in-the-wild with a single person under arbitrary poses.
We compare against PIFuHD [55] and Tex2Shape [4]. Be-
fore applying PIFuHD, we automatically remove the back-
ground using [50], as PIFuHD was trained with no- or sim-
ple backgrounds. Tex2Shape requires DensePose [5] seg-
mentations, that map input pixels to the SMPL model. As
shown in the Figure, the results of SMPLicit consistently
improve other approaches, especially PiFuHD, which fails
for poses departing from an upright position. Tex2Shape
yields remarkably realistic results, but is not able to cor-
rectly retrieve the geometry of all the garments. Observe
for instance, the example in the last row, where SMPLicit is
capable of reconstructing clothing at different layers (T-shirt

and jacket). Interestingly, once the reconstruction is done,
our approach can be used as a virtual try-on, changing gar-
ments’ style and reposing the person’s position. In Fig. 1
we show one such example.

In Fig. 6 we go a step further, and show that SM-
PLicit can also be applied on challenging scenarios with
multi-persons, taken from the MPII Dataset [6]. For this
purpose we iterate over all SMPL detections [52], project
the body model onto the image and mask out other peo-
ple’s segmentation. Note that in these examples, the model
has to tackle extreme occlusions, but the combination of
SMPLicit with powerful body pose detectors, like [52], and
cloth segmentation algorithms, like [50], makes this task
feasible. Of course, the overall success depends on each
individual algorithm. For instance, in the bottom-right ex-
ample of Fig. 6, errors in the segmentation labels are propa-
gated to our reconstruction algorithm which incorrectly pre-
dicts two upper-body garments for certain individuals.

7. Conclusion

We have presented SMPLicit, a generative model for
clothing able to represent different garment topologies and
controlling their style and cut with just a few interpretable
parameters. Our model is fully differentiable, making it
possible to be integrated in several computer vision tasks.
For instance, we showed that it can be readily used to fit 3D
scans, and reconstruct clothed humans in images that pose a
number of challenges, like multi-layered garments or strong
body occlusions due to the presence of multiple people. Ad-
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ditionally, our generative model can be used in geometric
content edition tasks to e.g. dynamically change the type of
garment attributes, opening the door to build novel virtual
try-on systems.
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